Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Sci ; 10(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37756079

RESUMO

Mycoplasma hyorhinis (M. hyorhinis) is responsible for infections in the swine population. Such infections are usually cured by using antimicrobials and lead to develop resistance. Until now, there has been no effective vaccine to eradicate the disease. This study used conserved domains found in seven members of the variable lipoprotein (VlpA-G) family in order to design a multi-epitope candidate vaccine (MEV) against M. hyorhinis. The immunoinformatics approach was followed to predict epitopes, and a vaccine construct consisting of an adjuvant, two B cell epitopes, two HTL epitopes, and one CTL epitope was designed. The suitability of the vaccine construct was identified by its non-allergen, non-toxic, and antigenic nature. A molecular dynamic simulation was executed to assess the stability of the TLR2 docked structure. An immune simulation showed a high immune response toward the antigen. The protein sequence was reverse-translated, and codons were optimized to gain a high expression level in E. coli. The proposed vaccine construct may be a candidate for a multi-epitope vaccine. Experimental validation is required in future to test the safety and efficacy of the hypothetical candidate vaccine.

2.
Front Immunol ; 14: 1200297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720232

RESUMO

African swine fever (ASF) is an infectious disease caused by African swine fever virus (ASFV) that is highly contagious and has an extremely high mortality rate (infected by virulent strains) among domestic and wild pigs, causing huge economic losses to the pig industry globally. In this study, SDS-PAGE gel bands hybridized with ASFV whole virus protein combined with ASFV-convalescent and ASFV-positive pig serum were identified by mass spectrometry. Six antigens were detected by positive serum reaction bands, and eight antigens were detected in ASFV-convalescent serum. In combination with previous literature reports and proteins corresponding to MHC-II presenting peptides screened from ASFV-positive pig urine conducted in our lab, seven candidate antigens, including KP177R (p22), K78R (p10), CP204L (p30), E183L (p54), B602L (B602L), EP402R-N (CD2V-N) and F317L (F317L), were selected. Subunit-Group 1 was prepared by mixing above-mentioned seven ASFV recombinant proteins with MONTANIDETM1313 VG N mucosal adjuvant and immunizing pigs intranasally and intramuscularly. Subunit-Group 2 was prepared by mixing four ASFV recombinant proteins (p22, p54, CD2V-N1, B602L) with Montanide ISA 51 VG adjuvant and immunizing pigs by intramuscular injection. Anticoagulated whole blood, serum, and oral fluid were collected during immunization for flow cytometry, serum IgG as well as secretory sIgA antibody secretion, and cytokine expression testing to conduct a comprehensive immunogenicity assessment. Both immunogen groups can effectively stimulate the host to produce ideal humoral, mucosal, and cellular immune responses, providing a theoretical basis for subsequent functional studies, such as immunogens challenge protection and elucidation of the pathogenic mechanism of ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Suínos , Vacinação , Imunização , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Antígenos de Histocompatibilidade Classe II , Imunidade Celular
3.
Microbiol Spectr ; 11(3): e0021823, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199643

RESUMO

Mesomycoplasma hyopneumoniae is the etiological agent of mycoplasmal pneumonia of swine (MPS), which causes substantial economic losses to the world's swine industry. Moonlighting proteins are increasingly being shown to play a role in the pathogenic process of M. hyopneumoniae. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme in glycolysis, displayed a higher abundance in a highly virulent strain of M. hyopneumoniae than in an attenuated strain, suggesting that it may have a role in virulence. The mechanism by which GAPDH exerts its function was explored. Flow cytometry and colony blot analysis showed that GAPDH was partly displayed on the surface of M. hyopneumoniae. Recombinant GAPDH (rGAPDH) was able to bind PK15 cells, while the adherence of a mycoplasma strain to PK15 was significantly blocked by anti-rGAPDH antibody pretreatment. In addition, rGAPDH could interact with plasminogen. The rGAPDH-bound plasminogen was demonstrated to be activated to plasmin, as proven by using a chromogenic substrate, and to further degrade the extracellular matrix (ECM). The critical site for GAPDH binding to plasminogen was K336, as demonstrated by amino acid mutation. The affinity of plasminogen for the rGAPDH C-terminal mutant (K336A) was significantly decreased according to surface plasmon resonance analysis. Collectively, our data suggested that GAPDH might be an important virulence factor that facilitates the dissemination of M. hyopneumoniae by hijacking host plasminogen to degrade the tissue ECM barrier. IMPORTANCE Mesomycoplasma hyopneumoniae is a specific pathogen of pigs that is the etiological agent of mycoplasmal pneumonia of swine (MPS), which is responsible for substantial economic losses to the swine industry worldwide. The pathogenicity mechanism and possible particular virulence determinants of M. hyopneumoniae are not yet completely elucidated. Our data suggest that GAPDH might be an important virulence factor in M. hyopneumoniae that facilitates the dissemination of M. hyopneumoniae by hijacking host plasminogen to degrade the extracellular matrix (ECM) barrier. These findings will provide theoretical support and new ideas for the research and development of live-attenuated or subunit vaccines against M. hyopneumoniae.


Assuntos
Mycoplasma hyopneumoniae , Pneumonia Suína Micoplasmática , Suínos , Animais , Virulência , Plasminogênio/metabolismo , Pneumonia Suína Micoplasmática/prevenção & controle , Mycoplasma hyopneumoniae/genética , Mycoplasma hyopneumoniae/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Matriz Extracelular
4.
Microb Pathog ; 174: 105934, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36481292

RESUMO

Mycoplasma hyopneumoniae is the etiological agent underlying porcine enzootic pneumonia, a chronic respiratory disease worldwide. The recruitment of plasminogen to the surface and subsequently promotion of plasmin conversion by the surface-located receptor, have been reported to assist the adhesion and invasion of Mycoplasmas. The surface localization and plasminogen-binding ability of M. hyopneumoniae enolase were previously confirmed; however, the biological functions were not be determined, especially the role as a plasminogen receptor. Here, using ELISA and SPR analyses, we confirmed the stable binding of M. hyopneumoniae enolase to plasminogen in a dose-dependent manner. The facilitation of the activation of plasminogen in the presence of tPA and direct activation of plasminogen at low efficiency without tPA addition by M. hyopneumoniae enolase were also determined using a plasmin-specific chromogenic substrate. Notably, the C-terminal and N-terminal regions located in M. hyopneumoniae enolase play an important role in plasminogen binding and activation. Additionally, we demonstrate that M. hyopneumoniae enolase can competitively inhibit the adherence of M. hyopneumoniae to PK15 cells. These results provide insight into the role of enolase in M. hyopneumoniae infection, a mechanism that manipulates the proteolytic system of the host.


Assuntos
Mycoplasma hyopneumoniae , Animais , Suínos , Mycoplasma hyopneumoniae/metabolismo , Plasminogênio/metabolismo , Fibrinolisina/metabolismo , Fosfopiruvato Hidratase , Adesinas Bacterianas/metabolismo
5.
Phytomedicine ; 108: 154504, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332388

RESUMO

BACKGROUND: Mycoplasma-associated pneumonia is characterized by severe lung inflammation and immunological dysfunction. However, current anti-mycoplasma agents used in clinical practice do not prevent dysfunction of alveolar macrophages caused by the high level of the cytokine tumor necrosis factor-α (TNF-α) after mycoplasma infection. Apigenin inhibits the production of TNF-α in variet inflammation associated disease. PURPOSE: This study aimed to investigate apigenin's effect on mycoplasma-induced alveolar immune cell injury and the mechanism by which it inhibits TNF-α transcription. METHODS: In this study, we performed a mouse model of Mycoplasma hyopneumoniae infection to evaluate the effect of apigenin on reducing mycoplasma-induced alveolar immune cell injury. Furthermore, we carried out transcriptome analysis, RNA interference assay, methylated DNA bisulfite sequencing assay, and chromatin immunoprecipitation assay to explore the mechanism of action for apigenin in reducing TNF-α. RESULTS: We discovered that M. hyopneumoniae infection-induced necroptosis in alveolar macrophages MH-S cells and primary mouse alveolar macrophages, which was activated by TNF-α autocrine. Apigenin inhibited M. hyopneumoniae-induced elevation of TNF-α and necroptosis in alveolar macrophages. Apigenin inhibited TNF-a mRNA production via increasing ubiquitin-like with PHD and RING finger domains 1 (Uhrf1)-dependent DNA methylation of the TNF-a promotor. Finally, we demonstrated that apigenin regulated Uhrf1 transcription via peroxisome proliferator activated receptor gamma (PPARγ) activation, which acts as a transcription factor binding to the Uhrf1 promoter and protected infected mice's lungs, and promoted alveolar macrophage survival. CONCLUTSION: This study identified a novel mechanism of action for apigenin in reducing alveolar macrophage necroptosis via the PPARγ/ Uhrf1/TNF-α pathway, which may have implications for the treatment of Mycoplasma pneumonia.


Assuntos
Macrófagos Alveolares , Mycoplasma , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Apigenina/farmacologia , Mycoplasma/metabolismo , Metilação , Necroptose , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
6.
Vet Res ; 53(1): 95, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36397177

RESUMO

Mycoplasma hyopneumoniae, the causative agent of swine respiratory disease, demonstrates differences in virulence. However, factors associated with this variation remain unknown. We herein evaluated the association between differences in virulence and genotypes as well as phenotype (i.e., biofilm formation ability). Strains 168 L, RM48, XLW-2, and J show low virulence and strains 232, 7448, 7422, 168, NJ, and LH show high virulence, as determined through animal challenge experiments, complemented with in vitro tracheal mucosa infection tests. These 10 strains with known virulence were then subjected to classification via multilocus sequence typing (MLST) with three housekeeping genes, P146-based genotyping, and multilocus variable-number tandem-repeat analysis (MLVA) of 13 loci. MLST and P146-based genotyping identified 168, 168 L, NJ, and RM48 as the same type and clustered them in a single branch. MLVA assigned a different sequence type to each strain. Simpson's index of diversity indicates a higher discriminatory ability for MLVA. However, no statistically significant correlation was found between genotypes and virulence. Furthermore, we investigated the correlation between virulence and biofilm formation ability. The strains showing high virulence demonstrate strong biofilm formation ability, while attenuated strains show low biofilm formation ability. Pearson correlation analysis revealed a significant positive correlation between biofilm formation ability and virulence. To conclude, there was no association between virulence and our genotyping data, but virulence was found to be significantly associated with the biofilm formation ability of M. hyopneumoniae.


Assuntos
Biofilmes , Mycoplasma hyopneumoniae , Doenças dos Suínos , Animais , Genótipo , Tipagem de Sequências Multilocus/veterinária , Mycoplasma hyopneumoniae/genética , Suínos , Doenças dos Suínos/microbiologia , Virulência
7.
Microb Pathog ; 172: 105779, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116609

RESUMO

Nicotinamide Adenine Dinucleotide-Dependent (NADH) flavin oxidoreductase and NADH oxidase (NOX) are important virulence factors of Mycoplasma hyopneumoniae (Mhp), which are devoted to the function of adhesion, oxidative stress damage and apoptosis to host cells in our previous studies. Here, immune responses of NADH flavin oxidoreductase (NFOR) and NOX in mice and immune efficacy inoculated with intramuscular (IM), intranasal (IN), intramuscular unite intranasal (IM + IN) approaches were evaluated and compared. Cellular immunity levels, systemic immune and local mucosal immune responses were investigated by indirect enzyme-linked immunosorbent assay (iELISA) and quantitative reverse transcription PCR (qRT-PCR). Mice inoculated with NFOR and NOX by IM and IN or IM + IN could induce obvious secretion of specific immunoglobulin G (IgG) and secretory immunoglobulin A antibodies (sIgA) compared to those in negative control group. IM + IN inoculation resulted in systemic and local mucosal immune responses that were strongly produced. Moreover, Mhp NFOR and NOX could activate local mucosal immune responses mediated by Th1 and Th17 cells by IN. Our finding supported the notion that IM + IN was an effective immunization route for Mhp, which lays a foundation for more effective prevention of Mhp, and provides theoretical basis for the development of new subunit vaccines of Mhp.


Assuntos
Mycoplasma hyopneumoniae , Camundongos , Animais , Imunidade nas Mucosas , NAD , Fatores de Virulência , Células Th17 , FMN Redutase , Vacinas Bacterianas , Imunoglobulina G , Vacinas de Subunidades , Imunoglobulina A Secretora , Flavinas , Camundongos Endogâmicos BALB C
8.
Vaccine ; 40(42): 6074-6083, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36109278

RESUMO

With the improvement of large-scale breeding in pig farms, conventional head-by-head immunization has disadvantages with low efficiency and high cost. Considering that most pathogens leading to pulmonary diseases circulate from the respiratory mucosa, immunization through the respiratory tract route has been a highly attractive vaccine delivery strategy. In this study, to develop an effective Mycoplasma hyopneumoniae (Mhp) aerosol vaccine, a customized ultrasonic atomizer was developed. The aerodynamic diameter, activity, and content of the Mhp aerosol vaccine were measured. In addition, piglets were immunized with the Mhp aerosol vaccine, and the immunity of the animal challenge protection test was evaluated. At the end of nebulization, the mass median aerodynamic diameters (MMAD) and geometric standard deviation (GSD) of the aerosol were 2.98 ± 0.02 µm and 1.51 ± 0.02, respectively. Moreover, 10 min after nebulization, the MMAD and GSD of the aerosol were 2.76 ± 0.02 µm and 1.51 ± 0.01, respectively, which were hardly changed. Compared with theoretical value, the actual titer of aerosol vaccines presented in 50% color changing unit (CCU50) after nebulization decreased 0.6. The shape, size, and uniformity of collected aerosols are relatively stable. The proportion of Mhp in aerosol produced by vaccine stock solution and 10 times diluted vaccine solution was 76.52% and 58.82%, respectively, and the average number of Mhp in a single aerosol was 3.06 and 1.51, respectively. In addition, the aerosol vaccine antigen particles could be transported to the lower respiratory tract, a local mucosal immune response was induced in piglets. The vaccine colonized the respiratory tract and significantly decline the lung lesion index after aerosol vaccination. In conclusion, an effective aerosol vaccine against Mhp infection was developed. And this is the first effective assessment for Mhp live vaccine with aerosolization against infection in piglets.


Assuntos
Mycoplasma hyopneumoniae , Pneumonia Suína Micoplasmática , Animais , Vacinas Bacterianas , Pneumonia Suína Micoplasmática/prevenção & controle , Aerossóis e Gotículas Respiratórios , Suínos , Vacinas Atenuadas
9.
mSystems ; 7(4): e0028222, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35699454

RESUMO

Lung inflammation induced by Mycoplasma hyorhinis infection accounts for significant economic losses in the swine industry. Increasing evidence suggests that there is cross talk between the lungs and the gut, but little is known about the effect of the lung inflammation caused by M. hyorhinis infection on gut microbiota and intestinal barrier function. Here, we investigated changes in the fecal microbiotas of pigs with M. hyorhinis infection and the microbial regulatory role of such infection in intestinal barrier function. We infected pigs with M. hyorhinis and performed 16S rRNA gene sequencing analyses of fecal samples, data-independent acquisition (DIA) quantitative proteomic analyses of intestinal mucosa, and analyses of barrier dysfunction indicators in serum. We found that pigs with M. hyorhinis infection exhibit lung and systemic inflammation, as reflected by the histopathological changes and activation of the TLR4/MyD88/NF-κB p65 signaling pathway in lung tissue, as well as the increased concentrations of serum inflammatory cytokines. Gut microbiotas tended to become disturbed, as evidenced by the enrichment of opportunistic pathogens. The increased diamine oxidase activities and d-lactate concentrations in serum and the decreased relative mRNA expression of Occludin, ZO-1, and Mucin2 indicated the impairment of intestinal barrier function. Quantitative proteomic analyses showed a variety of altered proteins involved in immunomodulatory and inflammatory functions. There was a positive correlation between the abundance of opportunistic pathogens and inflammatory-cytokine concentrations, as well as intestinal immunomodulatory proteins. Our results suggest that lung inflammation induced by M. hyorhinis infection can contribute to the dysbiosis of gut microbiota and intestinal barrier dysfunction, and dysbiosis of gut microbiota was associated with systemic inflammation and intestinal immune status. IMPORTANCE Cumulative evidence suggests that bacterial pneumonia may contribute to the dysbiosis of the gut microbiota and other gastrointestinal symptoms. Our experiment has demonstrated that lung inflammation induced by M. hyorhinis infection was associated with gut microbiota dysbiosis and intestinal barrier dysfunction, which may provide a theoretical basis for exploring the gut-lung axis based on M. hyorhinis infection.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Enteropatias , Infecções por Mycoplasma , Mycoplasma hyorhinis , Pneumonia , Animais , Suínos , Disbiose/veterinária , RNA Ribossômico 16S , Proteômica , Inflamação , Citocinas/farmacologia
10.
BMC Vet Res ; 18(1): 126, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366872

RESUMO

BACKGROUND: Mycoplasma hyopneumoniae (M. hyopneumoniae) is the etiological agent of enzootic pneumonia, a highly infectious swine respiratory disease that distributed worldwide. The pathogenesis and virulence factors of M. hyopneumoniae are not fully clarified. As an important virulence factor of bacteria, nicotinamide adenine dinucleotide (NADH) oxidase (NOX) participates in host-pathogen interaction, however, the function of NOX involved in the pathogenesis of M. hyopneumoniae is not clear. RESULTS: In this study, significant differences in NOX transcription expression levels among different strains of M. hyopneumoniae differed in virulence were identified, suggesting that NOX may be correlated with M. hyopneumoniae virulence. The nox gene of M. hyopneumoniae was cloned and expressed in Escherichia coli, and polyclonal antibodies against recombinant NOX (rNOX) were prepared. We confirmed the enzymatic activity of rNOX based on its capacity to oxidize NADH to NAD+. Flow cytometry analysis demonstrated the surface localization of NOX, and subcellular localization analysis further demonstrated that NOX exists in both the cytoplasm and cell membrane. rNOX was depicted to mediate adhesion to immortalized porcine bronchial epithelial cells (hTERT-PBECs). Pre-neutralizing M. hyopneumoniae with anti-rNOX antibody resulted in a more than 55% reduction in the adhesion rate of high- and low-virulence M. hyopneumoniae strains to hTERT-PBECs. Moreover, a significant difference appeared in the decline in CCU50 titer between virulent (168) and virulence-attenuated (168L) strains. NOX not only recognized and interacted with host fibronectin but also induced cellular oxidative stress and apoptosis in hTERT-PBECs. The release of lactate dehydrogenase by NOX in hTERT-PBECs was positively correlated with the virulence of M. hyopneumoniae strains. CONCLUSIONS: NOX is considered to be a potential virulence factor of M. hyopneumoniae and may play a significant role in mediating its pathogenesis.


Assuntos
Mycoplasma hyopneumoniae , Animais , Complexos Multienzimáticos , Mycoplasma hyopneumoniae/genética , NAD , NADH NADPH Oxirredutases , Oxirredutases/metabolismo , Suínos , Virulência
11.
Microbiol Spectr ; 10(3): e0249321, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35446115

RESUMO

Mycoplasma hyorhinis is a widespread pathogen in pig farms worldwide. Although the majority of M. hyorhinis-colonized pigs have no apparent clinical disease, the pathogen can induce diseases such as polyserositis, arthritis, and eustachitis in some cases. To explore the mechanisms for the occurrence of these diseases, we challenged 4 groups of Bama miniature pigs with M. hyorhinis isolated from pigs without clinical symptoms (non-clinical origin [NCO] strain) or with typical clinical symptoms (clinical origin [CO] strain) and investigated the impacts of different strains and inoculation routes (intranasal [IN], intravenous [IV] + intraperitoneal [IP], and IV+IP+IN) on disease induction. Another group of pigs was set as a negative control. Pigs inoculated with the CO strain through a combined intravenous and intraperitoneal (IV+IP) route showed a significant decrease in average daily weight gain (ADWG), serious joint swelling, and lameness compared with the pigs in the negative-control group. Furthermore, this group developed moderate-to-severe pericarditis, pleuritis, peritonitis, and arthritis, as well as high levels of IgG and IgM antibodies. Pigs inoculated IV+IP with the NCO strain developed less marked clinical, pathological changes and a weaker specific antibody response compared with the pigs inoculated with the CO strain. The challenging results of the NCO strain via different routes (IV+IP, IV+IP+IN, and IN) indicated that the combined route (IV+IP) induced the most serious disease compared to the other inoculation routes. Intranasal inoculation induced a smaller decrease in ADWG without obvious polyserositis or arthritis. These data suggest that differences in both strain virulence and inoculation route affect the consequences of M. hyorhinis infection. IMPORTANCE Mycoplasma hyorhinis is a widespread pathogen in pig farms worldwide. The mechanisms or conditions that lead to the occurrence of disease in M. hyorhinis-infected pigs are still unknown. The objective of this study was to evaluate the impact of differences in the virulence of strain and the inoculation route on the consequences of M. hyorhinis infection.


Assuntos
Artrite , Infecções por Mycoplasma , Mycoplasma hyorhinis , Doenças dos Suínos , Animais , Artrite/veterinária , Infecções por Mycoplasma/veterinária , Suínos , Porco Miniatura , Virulência
12.
Antibiotics (Basel) ; 11(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35453245

RESUMO

Mycoplasma hyorhinis is ubiquitous in swine, and it is a common pathogen of swine that causes polyserositis, arthritis, and maybe pneumonia. Fluoroquinolones are effective antimicrobials used for the treatment of mycoplasmal infection. However, a decrease in fluoroquinolones susceptibility in mycoplasma was observed. The molecular mechanisms have been studied in many mycoplasma species, while the mechanism in M. hyorhinis is still unknown. This study aimed to illustrate the in vitro development of fluoroquinolone resistance in M. hyorhinis and unveil the resistance mechanisms in both in vitro selected mutants and field strains. Seven ciprofloxacin-sensitive M. hyorhinis isolates were chosen to induce the fluoroquinolone resistance in vitro, and the point mutations in the quinolone resistance-determining regions (QRDRs) were characterized. The substitutions first occurred in ParC, resulting in a 2- to 8-fold increase in resistance, followed by additional mutations in GyrA and/or ParE to achieve a 32-fold increase. The mutations occurred in hot spots of QRDRs, and they were diverse and variable, including five in ParC (Ser80Phe, Ser80Tyr, Phe80Tyr, Glu84Gly, and Glu84Lys), four in GyrA (Ala83Val, Ser84Pro, Asp87Tyr, and Asp87Asn) and one in ParE (Glu470Lys). Target mutations in field strains were observed in the ParC (Ser80Phe, Ser81Pro, and Glu84Gln) of isolates with MICCIP = 2 µg/mL. This study characterized the point mutations in the QRDRs of M. hyorhinis and could be useful for the rapid detection of fluoroquinolone resistance in M. hyorhinis field isolates.

13.
Front Microbiol ; 13: 842058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308339

RESUMO

Mycoplasma hyorhinis is a common pathogen of swine and is also associated with various human tumors. It causes systemic inflammation, typically polyserositis and polyarthritis, in some infected pigs. However, the pathogenic mechanism of M. hyorhinis remains unclear. DnaK is a highly conserved protein belonging to the heat-shock protein 70 family of molecular chaperones, which plays important roles as a moonlighting protein in various bacteria. In the present study, we identified the surface exposure of M. hyorhinis DnaK. Two virulent strains expressed more DnaK on their surface than the avirulent strain. Thereafter, the potential moonlighting functions of DnaK were investigated. Recombinant M. hyorhinis DnaK (rMhr-DnaK) was found to be able to adhere to swine PK-15 cells and human NCI-H292 cells. It also bound to four extracellular matrix components-fibronectin, laminin, type IV collagen, and vitronectin-in a dose-dependent manner. ELISA demonstrated an interaction between rMhr-DnaK and plasminogen, which was significantly inhibited by a lysine analog, ε-aminocaproic acid. rMhr-DnaK-bound plasminogen was activated by tissue-type plasminogen activator (tPA), and the addition of rMhr-DnaK significantly enhanced the activation. Finally, a DnaK-specific antibody was detected in the serum of pigs immunized with inactivated vaccines, which indicated good immunogenicity of it. In summary, our findings imply that DnaK is an important multifunctional moonlighting protein in M. hyorhinis and likely participates extensively in the infection and pathogenesis processes of M. hyorhinis.

14.
Vet Res ; 53(1): 26, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337383

RESUMO

Mycoplasma hyorhinis may cause systemic inflammation of pigs, typically polyserositis and arthritis, and is also associated with several types of human cancer. However, the pathogenesis of M. hyorhinis colonizing and breaching the respiratory barrier to establish systemic infection is poorly understood. Glycolytic enzymes are important moonlighting proteins and virulence-related factors in various bacteria. In this study, we investigated the functions of a glycolytic critical enzyme, enolase in the infection and systemic spread of M. hyorhinis. Bacterial surface localization of enolase was confirmed by flow cytometry and colony hybridization assay. Recombinant M. hyorhinis enolase (rEno) was found to adhere to pig kidney (PK-15) cells, and anti-rEno serum significantly decreased adherence. The enzyme was also found to bind host plasminogen and fibronectin, and interactions were specific and strong, with dissociation constant (KD) values of 1.4 nM and 14.3 nM, respectively, from surface plasmon resonance analysis. Activation of rEno-bound plasminogen was confirmed by its ability to hydrolyze plasmin-specific substrates and to degrade a reconstituted extracellular matrix. To explore key sites during these interactions, C-terminal lysine residues of enolase were replaced with leucine, and the resulting single-site and double-site mutants show significantly reduced interaction with plasminogen in far-Western blotting and surface plasmon resonance tests. The binding affinities of all mutants to fibronectin were reduced as well. Collectively, these results imply that enolase moonlights as an important adhesin of M. hyorhinis, and interacts with plasminogen and fibronectin. The two lysine residues in the C-terminus are important binding sites for its multiple binding activities.


Assuntos
Mycoplasma hyorhinis , Plasminogênio , Adesinas Bacterianas , Animais , Fibronectinas , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Plasminogênio/metabolismo , Suínos
15.
Front Vet Sci ; 9: 1079359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601329

RESUMO

Proteomics is playing an increasingly important role in identifying pathogens, emerging and re-emerging infectious agents, understanding pathogenesis, and diagnosis of diseases. Recently, more advanced and sophisticated proteomics technologies have transformed disease diagnostics and vaccines development. The detection of pathogens is made possible by more accurate and time-constrained technologies, resulting in an early diagnosis. More detailed and comprehensive information regarding the proteome of any noxious agent is made possible by combining mass spectrometry with various gel-based or short-gun proteomics approaches recently. MALDI-ToF has been proved quite useful in identifying and distinguishing bacterial pathogens. Other quantitative approaches are doing their best to investigate bacterial virulent factors, diagnostic markers and vaccine candidates. Proteomics is also helping in the identification of secreted proteins and their virulence-related functions. This review aims to highlight the role of cutting-edge proteomics approaches in better understanding the functional genomics of pathogens. This also underlines the limitations of proteomics in bacterial secretome research.

16.
Vet Microbiol ; 265: 109310, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34954543

RESUMO

Mycoplasma hyorhinis (Mhr) infects pigs, typically causing polyserositis and polyarthritis. It has also been reported in various human tumors. The variable lipoprotein (Vlp) family is a vital surface component mediating the immune evasion of Mhr. We have previously reported its functions in the adherence of Mhr to pig cells. Herein, we further evaluated its role in interacting with host extracellular matrix (ECM) components (fibronectin, collagen type Ⅳ and laminin) and plasminogen. Consequently, the recombinant Vlp proteins of all the seven members (VlpA-VlpG) were able to bind most of the tested host molecules. Further experiment showed that region Ⅱ of all Vlp members has a strong binding ability, while the binding ability of region Ⅲ of each member varied between different host molecules. Comparing the Vlps containing short (rVlpX3) or long (rVlpX12) region Ⅲ, we found that the ability of most Vlps binding NCI-H292 cell membrane proteins became weaker as the molecule grows, except VlpG. However, the binding of VlpA, VlpB, VlpC and VlpG to tested ECM components and plasminogen tended to increase as Vlps became longer, and those of VlpE and VlpF decreased, and that of VlpD did not change. Furthermore, the activation of Vlp-bound plasminogen was proved. In summary, the Vlp family participates in the interaction of Mhr with host ECM and plasminogen in addition to cytoadhesion. The size variation of Vlps is likely to further regulate these interactions. The results may help to elucidate the roles of Vlps in the persistent infection of Mhr.


Assuntos
Mycoplasma hyorhinis , Animais , Matriz Extracelular/metabolismo , Lipoproteínas/genética , Mycoplasma hyorhinis/genética , Plasminogênio/metabolismo , Proteínas Recombinantes , Suínos
17.
Anal Chim Acta ; 1189: 339187, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34815032

RESUMO

African swine fever (ASF) is a swine viral disease that could cause highly contagious and extremely high mortality, causing huge economic losses to the pig industry. As there is currently no vaccine and effective treatment methods. Therefore, early monitoring is one of the most important solutions to prevent and control ASF. In this study, the dual QDM recombinant virus protein 30 and 54 (P30 and P54) probes and pre-incubation in vitro were proposed for the first time as QDM based-ASFV immunosensor (QAIS) for the ultra-sensitive quantitative detection of ASFV antibodies in serum. In the range from serum dilution of 1:1000 to 1:64000, it showed a good linear relationship (R2 = 0.9947), and its detection sensitivity was 1:64000 dilution. Compared with commercial enzyme-linked immunosorbent assay (ELISA) and colloidal gold immunochromatographic strip (CGICS), its detection sensitivity was improved by at least one order of magnitude and four orders of magnitude respectively. In addition, the whole ASFV antibody screening test can be completed in 25 min with simple operation. The performance and practicability of the established QAIS sensor have been verified by ASF-ELISA kit, and its coincidence rate was as high as 98.7% in 151 clinical samples. We firmly believe that the proposed QAIS sensor could potentially be applied to point-of-care testing (POCT) for quantitative ASFV antibody in pig farms.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Técnicas Biossensoriais , Febre Suína Africana/diagnóstico , Animais , Imunoensaio , Suínos , Proteínas Virais
18.
J Immunol Methods ; 500: 113196, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838793

RESUMO

Inactivated Mycoplasma hyopneumoniae vaccine is used extensively to control M. hyopneumoniae infection worldwide. Quantification techniques are essential in the process of standardizing and validating vaccines. In this study, we developed and optimized an indirect competitive enzyme linked immunosorbent assay (ic-ELISA) for the rapid quantification of M. hyopneumoniae antigen during vaccine production. Briefly, whole M. hyopneumoniae antigen was coated onto microtiter plates, and a polyclonal antibody against M. hyopneumoniae recombinant elongation factor thermo unstable (EF-Tu) protein was prepared and added with the samples to be tested. The methods were optimized and showed significant reproducibility, with coefficients of variation of 4.01% and 6.14% for the intra-and inter-assays, respectively. Quantification of M. hyopneumoniae cultures at different growth stages using the ic-ELISA test showed a similar curve to that of the traditional color changing units (CCU) assay, with a delay in the time when the amount reached the peak and started to fall. In the inactivated vaccine production process, the cultures could be harvested later than that for the live vaccine, at about 12 h after the end of the logarithmic growth phase. Different batches of cultures were measured for their relative potency value compared with the in-house reference vaccine, which was used to determine whether the cultures met the antigen amount requirements for vaccine preparation. The curves of the CCU titer and ic-ELISA titer in the logarithmic phase correlated strongly and a linear regression equation was established to calculate the CCU values rapidly using the ic-ELISA results. In conclusion, an ic-ELISA method was established to rapidly assess the amount of antigen in an M. hyopneumoniae culture during the vaccine production process.


Assuntos
Vacinas Bacterianas/imunologia , Mycoplasma hyopneumoniae/fisiologia , Pneumonia Suína Micoplasmática/imunologia , Suínos/imunologia , Animais , Anticorpos Antibacterianos/metabolismo , Antígenos de Bactérias/metabolismo , Ligação Competitiva , Ensaios Enzimáticos , Ensaio de Imunoadsorção Enzimática , Controle de Qualidade , Coelhos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos/microbiologia
19.
Front Microbiol ; 12: 747421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671334

RESUMO

Mycoplasma hyopneumoniae (Mhp) is the main pathogen that causes enzootic pneumonia, a disease that has a significant impact on the pig industry worldwide. The pathogenesis of enzootic pneumonia, especially possible virulence factors of Mhp, has still not been fully elucidated. The transcriptomic and proteomic analyses of different Mhp strains reported in the literature have revealed differences in virulence, and differences in RNA transcription levels between high- and low-virulence strains initially indicated that nicotinamide adenine dinucleotide (NADH)-dependent flavin oxidoreductase (NFOR) was related to Mhp pathogenicity. Prokaryotic expression and purification of the NFOR protein from Mhp were performed, a rabbit-derived polyclonal antibody against NFOR was prepared, and multiple sequence alignment and evolutionary analyses of Mhp NFOR were performed. For the first time, it was found that the NFOR protein was conserved among all Mhp strains, and NFOR was localized to the cell surface and could adhere to immortalized porcine bronchial epithelial cells (hTERT-PBECs). Adhesion to hTERT-PBECs could be specifically inhibited by an anti-NFOR polyclonal antibody, and the rates of adhesion to both high- and low-virulence strains, 168 and 168L, significantly decreased by more than 40%. Moreover, Mhp NFOR not only recognized and interacted with host fibronectin and plasminogen but also induced cellular oxidative stress and apoptosis in hTERT-PBECs. The release of lactate dehydrogenase by hTERT-PBECs incubated with Mhp NFOR was significantly positively correlated with the virulence of Mhp. Overall, in addition to being a metabolic enzyme related to oxidative stress, NFOR may also function as a potential novel virulence factor of Mhp, thus contributing to the pathogenesis of Mhp; these findings provide new ideas and theoretical support for studying the pathogenic mechanisms of other mycoplasmas.

20.
Small ; 17(34): e2101183, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34270853

RESUMO

CD8+ T cell responses play a critical regulatory role in protection against mycoplasma infection-related respiratory diseases. Nanovesicles derived from cell membranes have been shown to induce CD8+ T cell responses. Moreover, the short residence time of mycoplasma membrane-related vaccines in local lymph nodes limits the efficacy of current mycoplasma vaccines. Here, a long-residence pneumonia vaccine is developed using nanovesicles prepared by cell membrane fusion of Mycoplasma hyopneumoniae and interferon-γ (IFN-γ  )-primed macrophages, which are grafted with polyethylene glycol to increase residence time in the lymph nodes. Upregulation of intercellular adhesion molecule-1 (ICAM-1) on the membrane of IFN-γ-primed macrophages increases the targeting of the hybrid nanovesicle vaccine to the local lymph nodes, with increased CD8+ T cell activation. A mechanistic study reveals that CD8+ T cell activation is achieved via a pathway involving upregulation of C-C motif chemokine ligand 2/3 expression by E26 transformation-specific sequences, followed by increased immune-stimulatory activity of dendritic cells. In vivo, prophylactic testing reveals that the hybrid nanovesicle vaccine triggers a long-term immune response, as evidenced by a memory CD8+ T cell response against mycoplasma infection. The current study provides a new design strategy for mycoplasma vaccines that involves a hybrid method using biological sources and artificial modification.


Assuntos
Mycoplasma hyopneumoniae , Pneumonia , Vacinas , Humanos , Interferon gama , Macrófagos , Fusão de Membrana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...